

Welcome to TinyMk’s documentation!

Contents:

	Introduction/FAQ
	Why another build tool?

	Is TinyMk better than x?

	Why is the documentation so out-of-date?

	I have a question about using TinyMk. Where should I go?

	Tutorial
	The basics

	Running commands

	Dependencies

	Categories

	Parallel execution

	Pattern tasks

	Invoking categories

	Default tasks

	Conclusion

	Command-line reference
	Specifying task names

	API reference

Indices and tables

	Index

	Module Index

	Search Page

Introduction/FAQ

Why another build tool?

There’s no real reason; I just wanted to experiment. After using build systems
like Shake [http://shakebuild.com] (very powerful but complex) and
Cake [http://coffeescript.org/#cake] (simple and elegant but very
rebuild-the-wheel type), I wanted a mix. I like Haskell, but I don’t like it
enough to work with it that much. (FUTURE EDIT: I now like Haskell a lot
more, but it’s large size is a big problem when trying to deploy.) TinyMk is
written in Python, which is pre-installed on most Unix-like platforms, and is
very portable. One thing I especially liked about Cake was the use of creative
prefixes (task build calls build:objects and build:library). TinyMk
implements this using categories.

Is TinyMk better than x?

No. Every build system has different goals/concepts. It’s useless to ask if x
is better than y when they have completely different end goals.

Of course, when comparing x to CMake/autotools, x always wins.

Why is the documentation so out-of-date?

Work-in-progress. I hate writing API docs.

I have a question about using TinyMk. Where should I go?

Use the mailing list [https://groups.google.com/forum/#!forum/tinymk]: tinymk@googlegroups.com.

Tutorial

TinyMk may be small, but it’s still quite powerful.

The basics

Here’s a basic example:

from tinymk import *

@task()
def test():
 print('Hello, TinyMk!')

main()

This simple code defines a task named test. Save this into a file named
build.py and run it:

$ python build.py
invalid number of args
usage: build.py [-h|--help] [--task-help] <task> [<args>]
$

To list the tasks, use ? as the task name:

$ python build.py ?
Tasks:

test
$

Let’s run our task:

$ python build.py test
Running task test...
Hello, TinkMk!
$

Running commands

Often, in a build script, you don’t want to just print stuff. You want to be
able to run programs. Look at this example:

from tinkmk import *

@task()
def test():
 run('cp x.in x.out')

main()

Now create a file named x.in:

$ echo 'Hi!' > x.in
$

Next, run the build script and check our new file x.out:

$ python build.py test
Running task test...
cp x.in x.out
$ cat x.out
Hi!
$

Dependencies

Let’s say we have a big project, consisting of millions of files. It’s likely
that you don’t want to rebuild everything when you modify one file. Build
systems like make let you mention a command’s dependencies:

x.out : x.in
 cp x.in x.out

TinyMk can do this, too, albeit slightly differently. You manually check if you
need to update the files using need_to_update:

 from tinymk import *

@task()
def test():
 if need_to_update('x.out', 'x.in'):
 run('cp x.in x.out')

main()

Typing all of that is a pain, though. That’s what the run_d function is for:

from tinymk import *

@task()
def test():
 run_d('x.out', 'x.in', 'cp x.in x.out')

main()

That’s easier, isn’t it?

Categories

In a large project, you might want to apply some method of organization. TinyMk
lets you group tasks into categories. Here’s an example:

from tinymk import *

@task('a:')
def b():
 print('Inside task a:b')

main()

Now you can use it like this:

$ python build.py a:b
Running task a:b...
Inside task a:b
$

Parallel execution

Sometimes you can run different tasks at the same time. For instance:

from tinymk import *

@task()
def build_object1():
 run_d('a.o', 'a.c', 'gcc -c a.c -o a.o')

@task()
def build_object2():
 run_d('b.o', 'b.c', 'gcc -c b.c -o b.o')

@task()
def build():
 if need_to_update('app', ['a.o', 'b.o']):
 qinvoke('build_object1')
 qinvoke('build_object2')
 run('gcc a.o b.o -o app')

main()

Notice the use of qinvoke. It’s like invoke, but it doesn’t print the name of
the currently running task.

Now, a.o and b.o don’t directly depend on each other. We can technically
build those two at the same time. Look at this slightly modified code:

from tinymk import *

@task()
def build_object1():
 run_d('a.o', 'a.c', 'gcc -c a.c -o a.o')

@task()
def build_object2():
 run_d('b.o', 'b.c', 'gcc -c b.c -o b.o')

@task()
def build():
 if need_to_update('app', ['a.o', 'b.o']):
 p1 = pqinvoke('build_object1')
 p2 = pqinvoke('build_object2')
 p1.join()
 p2.join()
 run('gcc a.o b.o -o app')

main()

This time, we’re using pqinvoke. pqinvoke is just like qinvoke, except
that it return an object of type multiprocessing.Process (see the Python
multiprocessing module [https://docs.python.org/library/multiprocessing.html]).
The next line does the same thing. The neat thing is that pqinvoke doesn’t
wait for the task to finish. It simply starts the task in a seperate process.
That way, you can run multiple tasks at once.

However, there is a major issue: how do we know when p1 and p2 are done so
we can finish building? Well, the join method simply pauses the current task
until it’s own task finishes running.

Also note that, just like qinvoke has it’s counterpart pqinvoke, invoke
has its own multiprocessing counterpart: pinvoke.

One more thing: you need to be careful when printing text to the screen when
multiple tasks are running at once, or else their output will get all jumbled
together. To fix the issue, simply enclose the code with a with lock: block:

with lock:
 print('Hello!')
continue doing other stuff...

Pattern tasks

Well, what if you need to make a copy of every file in the directory? TinyMk has
a feature for this: pattern tasks. A pattern task is the TinyMk equivalent to
GNU make’s pattern rules:

from tinymk import *

@ptask('%.in', '%.out', glob.glob('*.in'))
def copy_files(outs, dep):
 run_d(outs, dep, 'cp %s %s' % (out[0], dep))

main()

What the above code does is this:

For every file in the list returned by glob.glob:

	Match the file against the pattern %.in. Think about it like a regex:
(.+?).in.

	Take the next that’s in the place of the percent sign and replace the percent
in %.out with it. For example, if glob.glob returned [‘abc.in’], then
the pattern %.in matching against it would result in abc. Then, the
percent sign in %.out is replaced with abc to result in abc.out.

	Create a task with those files.

outs is a list, which is why we index the 1st element.

Invoking categories

Pattern rules are great, but it’s tricky to call them. The solution: put them
all in a category and use cinvoke:

...

add_category('copy_stuff')

@ptask('%.in', '%.out', glob.glob('*.in'), 'copy_stuff')
...

@task()
def copy_stuff():
 cinvoke('copy_stuff')

cinvoke runs every task inside the category copy_stuff (except for
copy_stuff itself).

Default tasks

You can have a task that will be run by default if no other task is specified:

@task()
def build():
 print("Inside build")

main(default='build')

Conclusion

That concludes this breif tutorial on TinyMk. There’s much more that hasn’t been
discussed, however; you’ll want to read the API reference. In
addition, you should read the command line interface reference.

Command-line reference

Usage:

build_script [-h|--help] [--task-help] <task> [<args>]

	
-h, --help

	Show the help screen.

	
--task-help

	Print information on specifying task names. See Specifying task names.

	
task

	The task to call. See Specifying task names.

	
args

	Arguments passed to the task.

Specifying task names

Tasks are organized into groups called categories. For example, this task name:

a:b:c

is referring to the task c inside the category b inside the category a.

If you do this:

a:b:?

the tasks belonging to the category b inside the category a will be printed.

If you do this:

a:b:c?

it will print information about the task c inside b inside a.

API reference

	
tinymk.lock

	An instance of multiprocessing.Lock. Use this when dealing with stdout
and stderr.

	
tinymk.DBManager

	The database manager. This is exported so that you can change the database
path if desired:

from tinymk import *
DBManager.path = 'whatever-other-name.db'

The default path is .tinymk.db.

	
tinymk.file_digest(path, hash=<unspecified>)

	Return the digest of the given path. hash is the hashing algorithm to use
(you can subsitite in any hash in hashlib, e.g.
file_digest(..., hash=hashlib.sha224)). The default hashing algorithms
used are blake2b on 64-bit Python 3.6, blake2s on 32-bit Python 3.6, and
SHA-256 on all other Python versions and architectures.

	
tinymk.add_category(name)

	Add a new category. You can create multiple categories at once by separating
the name with colons(:):

add_category('a') # add a category named a
add_category('a:b:c') # add a category named c inside a new category in b inside a

Deprecated since version 0.4: task() will automatically create any categories in its path.

	
tinymk.task(tname=None)

	A decorator to create a new task with the name tname.

	Parameters:	tname – If None, the task will carry the name of the function. In

addition, if tname ends with a colon, tname will be used as the category,
and the function’s name will be the task name. For example:

@task('a:b:') # task name will be a:b:c
def c(): pass

@task('a:b:d') # task name will be a:b:d
def abc(): pass

@task() # task name will be xyz
def xyz(): pass

	
tinymk.ptask(pattern, outs, deps, category=None)

	A decorator to create a set of pattern tasks. Pattern tasks are the TinyMk
equivalent of GNU Make’s pattern rules. Here’s an example:

@ptask('%.in', '%.out', glob.glob('*.in'))
def copy_files(outs, dep):
 run_d(outs, dep, 'cp %s %s' % (dep, outs[0]))

That’s roughly equivalent to this GNU make rule:

%.out : %.in
 cp $< $@

	Parameters:	
	pattern – The pattern that deps will be matched against.

	outs – The output file patterns.

	deps – The input files.

	category – The category to place the tasks in.

	
tinymk.need_to_update(outs, deps)

	Returns True if the oldest file in outs is newer than the newest file in
deps. If either outs or deps is a string, it will be converted to a list
using shlex.split.

	
tinymk.digest_update(outs, deps)

	Returns True if any of the files in deps have been modified since the last
time the function was called. The SHA1 hashes are stored in an SQLite3
database.

	Parameters:	
	outs – Ignored. Only here so it can be used with run_d().

	deps – The dependencies.

	
tinymk.invoke(name, *args, **kw)

	Calls the task named name.

	Parameters:	
	name – The task to call.

	*args – The positional arguments passed to the task.

	**kwargs – The keyword arguments passed to the task.

	
tinymk.qinvoke(name, *args, **kw)

	The same thing as invoke(), but doesn’t print the task that is
executing.

	
tinymk.pinvoke(*args, **kw)

	The same thing as invoke, but, instead of running the task, launches it in a
seperate process and returns a multiprocessing.Process object. See
invoke().

	
tinymk.pqinvoke(*args, **kw)

	The same thing as pinvoke, but doesn’t print the task that is executing.

	
tinymk.cinvoke(category, invoker=invoke)

	Call invoker for every task contained within category. Note that, if the
category itself is a task, it will not be called.

	
tinymk.run(cmd, write=True, shell=False, get_output=False)

	Run cmd.

	Parameters:	
	cmd – The command to run. If it is a string and shell is False, it
will first be converted to a list.

	write – If True, the command will be printed to the screen before it’s
run.

	shell – If True, the command will be run in the shell.

	get_output – If True, a tuple consisting of (stdout, stderr)
containing the command’s output will be returned.

	
tinymk.run_d(outs, deps, cmd, func=need_to_update, **kw)

	Call run with cmd if func, when called with outs and deps, returns
True. Doing:

run_d('x.out', 'x.in', 'cp x.in x.out', func)

Is equivalent to:

if func('x.out', 'x.in'):
 run('cp x.in x.out')

	Parameters:	
	outs – The output files.

	deps – The dependencies.

	cmd – The command to run. See run().

	**kw – Keyword arguments passed to run. See run().

	
tinymk.main(no_warn=False, default=None)

	Run the main driver. If no_warn is True, then no deprecation warnings will
be displayed. If default is not None, it is assumed to be a string holding
a task to run if no tasks were given on the command line.

 Python Module Index

 t

 		 	

 		
 t	

 	
 	
 tinymk	

Index

 Symbols
 | A
 | C
 | D
 | F
 | I
 | L
 | M
 | N
 | P
 | Q
 | R
 | T

Symbols

 	
 	
 --task-help

 	command line option

 	
 	
 -h, --help

 	command line option

A

 	
 	add_category() (in module tinymk)

 	
 	
 args

 	command line option

C

 	
 	cinvoke() (in module tinymk)

 	
 command line option

 	--task-help

 	-h, --help

 	args

 	task

D

 	
 	DBManager (in module tinymk)

 	
 	digest_update() (in module tinymk)

F

 	
 	file_digest() (in module tinymk)

I

 	
 	invoke() (in module tinymk)

L

 	
 	lock (in module tinymk)

M

 	
 	main() (in module tinymk)

N

 	
 	need_to_update() (in module tinymk)

P

 	
 	pinvoke() (in module tinymk)

 	
 	pqinvoke() (in module tinymk)

 	ptask() (in module tinymk)

Q

 	
 	qinvoke() (in module tinymk)

R

 	
 	run() (in module tinymk)

 	
 	run_d() (in module tinymk)

T

 	
 	
 task

 	command line option

 	
 	task() (in module tinymk)

 	tinymk (module)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to TinyMk's documentation!

 		Introduction/FAQ

 		Why another build tool?

 		Is TinyMk better than x?

 		Why is the documentation so out-of-date?

 		I have a question about using TinyMk. Where should I go?

 		Tutorial

 		The basics

 		Running commands

 		Dependencies

 		Categories

 		Parallel execution

 		Pattern tasks

 		Invoking categories

 		Default tasks

 		Conclusion

 		Command-line reference

 		Specifying task names

 		API reference

_static/comment.png

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment-bright.png

